02548nas a2200265 4500000000100000008004100001260001300042653001000055653002300065653003900088653002000127653000900147100001600156700001500172700001500187700001400202700001600216700001300232700001700245700001200262700001500274245011900289520186100408022001302269 2016 d bElsevier10aGhana10aIntegrated control10aNeglected tropical diseases (NTDs)10aschistosomiasis10aWASH1 aKulinkina A1 aKosinski K1 aPlummer JD1 aDurant JL1 aBosompem KM1 aAdjei MN1 aGriffiths JK1 aGute DM1 aNaumova EN00aIndicators of improved water access in the context of schistosomiasis transmission in rural Eastern Region, Ghana.3 a

Populations with poor access to water, sanitation and hygiene (WASH) infrastructure are disproportionately affected by the neglected tropical diseases (NTDs). As a result, WASH has gained increasing prominence in integrated control and elimination of NTDs, including schistosomiasis. In order to identify underserved populations, relevant measures of access to WASH infrastructure at sub–national or local levels are needed. We conducted a field survey of all public water sources in 74 rural communities in the Eastern Region of Ghana and computed indicators of water access using two methods: one based on the design capacity and another on the spatial distribution of water sources. The spatial method was applied to improved and surface water sources. According to the spatial method, improved water sources in the study area were well-distributed within communities with 95% (CI95%: 91, 98) of the population having access within 500 m when all, and 87% (CI95%: 81, 93) when only functional water sources were considered. According to the design capacity–based method, indicator values were lower: 63% (CI95%: 57, 69) for all and 49% (CI95%: 43, 55) for only functional sources. Surface water access was substantial with 62% (CI95%: 54, 71) of the population located within 500 m of a perennial surface water source. A negative relationship was observed between functional improved water access and surface water access within 300 m. In this context, perceived water quality of the improved sources was also important, with a 17% increase in surface water access in towns with one reported water quality problem as compared to towns with no problems. Our study offers a potential methodology to use water point mapping data to identify communities in need of improved water access to achieve schistosomiasis risk reduction.

 a00489697